COVID-19 Variants: South Africa Variant B.1.351 & the E484K Mutation

In this Article

The South African variant emerged after the first epidemic wave in a heavily infected metropolitan area, Nelson Mandela Bay, located on the coast of the Eastern Cape Province. We now know that B.1.351 is characterised by eight mutations in its spike protein, including three at important places in the receptor-binding domain (K417N, E484K and N501Y) that may influence how it binds to receptors and infects human cells.

 

 

This is my last piece before half-term (that went quickly!). Winston Churchill’s most famous quote was ‘democracy is the worst form of government except for all others’. Following November’s landslide election win by Ms Aung Suu Kyi’s National League for Democracy (NLD) party in Myanmar it is difficult to witness the fact that the country is once again under military rule. Aung Suu Kyi spent nearly 15 years in detention between 1989 and 2010. She was internationally hailed as a beacon of democracy and received the Nobel Peace Prize in 1991 (although since then she has proven a controversial figure when she openly supported the mass genocide of Rohingya Muslim communities).

And then there is the detention and imprisonment of anti-corruption campaigner Alexei Navalny who is the most prominent face of Russian opposition to President Vladimir Putin. He is the leader of the Russia of the Future party and the founder of the Anti-Corruption Foundation (FBK). Navalny has more than six million YouTube subscribers and more than two million Twitter followers. This reminds me of the old joke about Vladimir Putin about his approval ratings going up to 80% (the other 20% are missing) and the one about his favourite song (‘Crimea River’ as in ‘Cry me a River’).

The development of the Russian Sputnik V vaccine has been internationally widely heavily criticised for unseemly haste, cutting corners, and with an absence of transparency.  As it transpires these doubts were unjustified. Despite intense scepticism the results for Sputnik 5 were finally published in the ‘Lancet’ this week. The results demonstrate a clear scientific principle which means another vaccine can now join the fight to reduce the incidence of COVID-19. Vaccine efficacy of Sputnik 5 in Phase 3 trials involved 20,000 participants which was based on the numbers of confirmed COVID-19 cases from 21 days after the first dose of vaccine, was reported as 91·6%.

I am not overly keen on writing another article about COVID-19 because we are all totally saturated with information. However, at the clinic we have been asked a lot of questions about the South African variant (B.1.351). COVID-19 it would seem is undertaking some evolutionary genetic shuffling (or escape mutations) in response to our best efforts.

 

Concern over the new Variant B.1.351

Clearly there is cause for concern at the time of writing as the UK has launched a surge testing programme to detect the variant after it became obvious that several cases could not be linked to travel or an obvious source of infection. Hence, we began house-by-house COVID-19 testing in various communities to trace B.1.351 before it spreads widely and undermines our nationwide vaccination programme.

Meanwhile rollout of the Oxford-AstraZeneca vaccine in South Africa has been paused after a study in 2000 healthy and young volunteers reported that it did not protect against mild and moderate disease caused by the B.1.351. What of the other approved first wave vaccines and soon to be approved second wave vaccines?

Pfizer announced that neutralisation of B.1.351 was slightly lower with its vaccine BNT162b2 when compared to other mutations although they believe it will not lead to ‘a significant reduction’ of the jab’s effectiveness. The Johnson & Johnson vaccine (JNJ-78436735 or Ad26.COV2.S) found that its one-shot vaccine had an overall efficacy rate of 72% against existing forms of COVID-19 but this was reduced to 57% against B.1.351.

 

 

Moderna reported that their vaccine (mRNA-1273) was six times weaker against B.1.351 and Novavax saw its NVX-CoV2373 vaccine efficacy drop from 90% to 60%. Moderna said that out of caution, the company had started work on a ‘booster’ vaccine dose against the South African variant, which could potentially be added to the two-dose series for the existing vaccine.

 

So Why is the South African variant b.1.351 so distinctive?

In general, the continued widespread transmission of COVID-19 in many parts of the world creates the conditions for significant virus evolution. Surprisingly COVID-19 is no Ferrari in the world of viruses when it comes to mutations. It is estimated that its  genome acquires around two single-letter mutations a month to the 30,000 letters in its genomic code. This is a rate around half as fast as influenza and one-quarter the rate of HIV.

The South African variant emerged after the first epidemic wave in a heavily infected metropolitan area, Nelson Mandela Bay, located on the coast of the Eastern Cape Province. It then spread rapidly, becoming within weeks the dominant lineage in the Eastern Cape and Western Cape Provinces (suggesting it may be associated with increased transmissibility). Further studies found it to be 50% more transmissible than earlier strains of COVID-19.

Now, South African officials are finding the variant in more than 90% of samples from COVID-19 patients that undergo genetic sequencing. The variant has since shown up in at least 32 other countries.

We now know that B.1.351 is characterised by eight mutations in its spike protein, including three at important places in the receptor-binding domain (K417N, E484K and N501Y) that may influence how it binds to receptors and infects human cells. The mutation that it is most concerning is specifically the E484K mutation (this has also occurred in the Brazilian variant B.1.1.28).

E484K is called an ‘escape’ mutation because it helps the virus slip past the body’s immune defences and thus also impacts on vaccine efficiency. Essentially, the mutation makes it more difficult for antibodies to stick to the viral protein spike.

One of the most concerning features of the spike protein of COVID-19 is how it moves or changes over time during the evolution of the virus. Each COVID-19 virus particle has roughly 26 spikes, each of which is made of three long chains of  proteins. Each of these chains is 1,273 amino acids long and is studded with 23 sugar molecules. Each chain neatly folds into a structure to form the spike ( or to be precise a spike trimer as seen below).

 

 

What is the E484K Mutation?

Within all these folds in these three chains are areas that have discrete biological functions. Each has a functional element with a different biochemical purpose such as binding to the target cell and fusing with a target cell membrane. The spike is also involved in other processes such as immune evasion and lending structural stability to the particle. Given these properties it is a great target for a vaccine which is why it is the fundamental focus of most of our vaccines.

Most mutations to the spike proteins may not even be particularly beneficial and could even impede the function of the spike protein or have no overall effect on it. But just a few may cause changes that give the new version of the virus a selective advantage by making it more transmissible or infectious. One way this could possibly occur is through a mutation on a part of the spike protein that prevents protective antibodies from binding to it which is of course what has happened to the South African variant (and the Brazilian variant). Another way would be to make the spikes ‘stickier’ so that they attach to our cells.

In this E484K mutation, an exceedingly small change occurs when just one negatively charged amino acid (glutamic acid) is substituted with a positively charged amino acid (lysine). Scientific analysis of this effect reveals it generates a new site on the spike protein for binding to human cells ACE2, binding which appears to be significantly stronger. This small change also crucially reduced antibody recognition. What is also concerning is that COVID-19 is also acquiring the E484K change in the UK through a process of parallel natural selection and evolution.

On 1st February 2021, Public Health England (PHE) announced that the COVID-19 Genomics (COG-UK) consortium had identified this same E484K mutation in 11 samples from people carrying the UK variant B.1.1.7 – the Kent variant. These 11 samples are likely to be the tip of the iceberg, however, as less than one in 10 samples from people who test positive are sequenced and many people never get tested in the first place. These cases were identified around the Bristol and Liverpool areas.

Variants are a numbers game. Give a virus more bodies and more time to spread, and novel variants are certain to emerge. The good news is that all variants—be they existing or future ones—can in principle be controlled with the same measures.

Join Our VIP Health Club for Exclusive Benefits
Phil Heler
February 13, 2021

Share Post

You May Also Like...

There is a very convincing argument that nutritional guidelines in the UK are...

The trajectory of gut microbiome research has gone interstellar. It is driven by...

Even in the UK we have access to a good profile of vegetables...

Privacy policy

In this privacy policy references to “we”, “us” and “our” are to Buxton Osteopathy. References to “our Website” or “the Website” are to www.buxtonosteopathy.co.uk.

What information do we collect and how?

The information that we collect via the Website may include

– Any personal details that you knowingly provide us with through forms and our email, such as name, address, telephone number, etc. In order to effectively process credit or debit card transactions it may be necessary for the bank or card processing agency to verify your personal details for authorisation outside the European Economic Area (EEA). Such information will not be transferred out of the EEA for any other purpose.

– Your preferences and use of email updates, recorded by emails that we send you (if you select to receive email updates on products and offers).

– Your IP Address. This is a string of numbers unique to your computer that is recorded by our web server when you request any page or component on the Website. This information is used to monitor your usage of the Website.

– Data recorded by the Website which allows us to recognise you and your preferred settings. This saves you from re-entering information on return visits to the site. Such data is recorded locally on your computer through the use of cookies. Most browsers can be programmed to reject or warn you before downloading cookies, and information regarding this may be found in your browser’s ‘help’ facility.

What we do with your information

Any personal information that we collect from this website will be used in accordance with the Data Protection Act 1998 and other applicable laws. The details that we collect will be used:

To process your order, to provide after sales service (we may pass your details to another organisation to supply/deliver products or services that you have purchased and/or to provide after-sales service).

In certain cases we may use your email address to send you information on our other products and services. In such a case you will be offered the option to opt in/out before completing your purchase.

We may need to pass the information we collect to other companies for administrative purposes. We may use third parties to carry out certain activities, such as processing and sorting data, monitoring how customers use the Website and issuing our emails for us. Third parties will not be allowed to use your personal information for their own purposes.

Your rights

You have the right to request a copy of any information that we currently hold about you. In order to receive such information please send your contact details including address and payment of £25 to cover administration expenses to the following address:

Privacy Policy (Phil Heler)
Buxton Osteopathy Clinic,
7 Bridge Street,
Buxton,
Derbyshire SK17 6BS.

Other websites

This privacy policy only covers this website. Any other websites which may be linked to by our website are subject to their own policies, which may differ from ours.

 
 

Unlock Your Guide to a Pain-Free Life

Take the first step toward better health with our free PDF guide from Buxton Osteopathy. 

Sign up today to receive valuable advice
and start your journey to a healthier,
pain-free life! 

This field is for validation purposes and should be left unchanged.

Advanced Shockwave Therapy at Buxton & Bakewell Osteopathy​

At Buxton and Bakewell Osteopathy Clinics we offer latest treatment technologies. We have been offering Shockwave Therapy since 2017 and we are very experienced practitioners.

Sign up today to start your journey!

Fill in the Form to find out More about the Buxton & Bakewell Shockwave Therapy Program.

This field is for validation purposes and should be left unchanged.

Our Commitment to Our Patients

This is consistent with our mandate to offer our patients the best possible treatment outcomes using modalities supported by best clinical evidence.

Sign up today to start your journey!

This field is for validation purposes and should be left unchanged.

Unlock Your Guide to
a Pain-Free Life

Get expert tips on managing pain and improving mobility with our free PDF guide from Buxton Osteopathy.

Sign up today to start your journey toward a healthier, pain-free life! 

This field is for validation purposes and should be left unchanged.